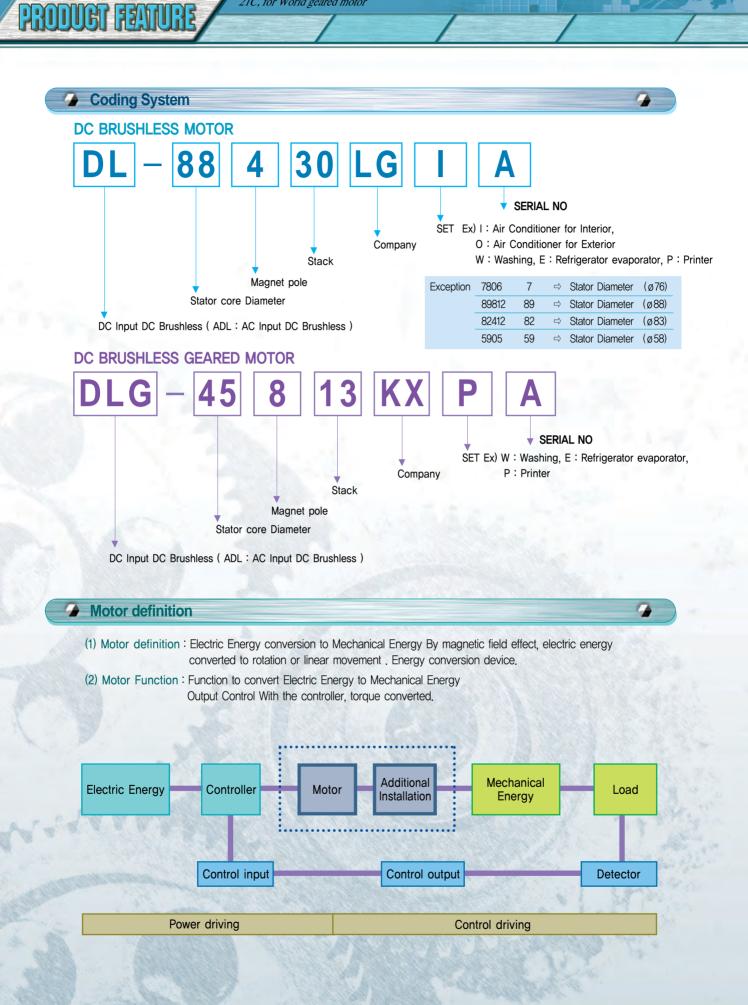


21C, for World geared motor! BLDC MOTOR

	Mar. 91	Founded Mung-Jin Electronics, Co., Ltd
NY	May. 91	AC / DC Geared Motor produced
۲Y (۲	May. 92	R&D center approved (Ministry of Science and Technology, Korea Industrial Technology Promotion Association)
	Jan. 93	Selected to be a participant in the ELECTRO-21 PROJECT (Ministry of Commerce, Industry and Energy)
	Feb. 93	Selected to be an excellent minor enterprise in technology direction. (Ministry of Science and Technology)
	Jan. 94	Standard Geared Motor produced
	Jun. 94	Converted into a corporate body as SUNGSHIN P & IND, Co., Ltd
	Dec. 94	Awarded the new technique's industry gold prize in a In-cheon.
	Jul. 96	EM Mark Certified
	Oct. 96	UL Mark Certified
	Jan. 97	CE Mark Certified
	Jul. 98	Selected to be a venture business (Incheon Small and Medium Business Administration)
	Jan. 99	ISO 9002 Authentication Certified
	Jan. 00	Converted into a corporate body as SPG, Co., Ltd
	Jan. 00	ISO 9001 Authentication Certified
	May. 00	TUV Mark Certified
	Nov. 01	Awarded the "5 Million Dollars Export Prize" (Ministry of Commerce, Industry and Energy)
	Jan. 02	ISO 14001 Authentication Certified (BVQI)
	Apr. 02	Founded the R&D center in the SPG, Co., Ltd
	Apr. 02	NT(New Technique) Mark Authentication Certified (Ministry of Commerce, Industry and Energy, Technical Standard Chief)
	Jul. 02	KOSDAQ Registrated
	Nov. 02	Awarded the president prize in the new technique enterprise of merit.
	Dec. 02	Selected to be first line production in worldwide
	Oct. 03	CCC Authentication Certified
	Nov. 03	Established second plant (Completion)
	Dec. 03	Established a local subsidiary(SPG USA, Inc) in USA region
	May. 04	Established a local subsidiary(SPG company) in China region
	Nov. 04	Awarded the "10 Million Dollars Export Prize" (Ministry of Commerce, Industry and Energy)
	Dec. 04	Awarded "industry and peace prize for united part" (In-cheon)
	May. 05	Acquired by transfer the BLDC motor sales part. (SUNGSHIN P & IND, Co., Ltd -> SPG, Co., Ltd)

COMP HIST

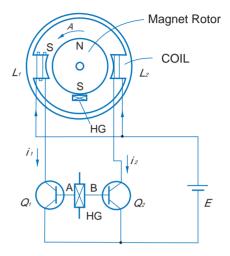
Jul. 06 Established a local subsidiary(SPG MOTOR(SUZHOU) COMMERCE AND TRADE CO.,LTD) in China region


BLDC MOTOR

21C, for World geared motor

INDEX

Coding System / Motor Definition 20 BLDC Motor driving method / Motor Category 21 Strong and Weak Point of BLDC Motor 23 BLDC Motor Characteristic curve / Related Terms 24 Test Method (General Specification) of BLDC Motor 26 BLDC Motor Application 28 BRUSHLESS MOTOR 31 21C, for World geared motor



BLDC Motor driving method

PRODUCT FEATURE

For the reference of using Hall Sensor, maximummagnet flux move to Spole of Rotor magnet and output generated to A side then TR QI electrified, Coil LI being Magnetization, it send the electricity to ir direction. By Flaming's Rule , S-pole form in right side of LI, Rotor magnet 's Spole push and N-pole pull 180 degree rotation, so S-pole of Magnet become more distance as well as magnetic flux sensing being gone.(No out-put of A and B). However in case of N-pole getting closed to Hall Sensor by magnet inertia, N-pole having maximum magnetization, it make B side power, TR Q2 electrified and Coil L2 magnetization.

And Current flow to i2 side, S-pole form in left side of L2, finally S-pole of Rotor magnet push and N-pole pull 360 degree rotation.

BLDC Motor Category

Classification Circuit composition Strong Point Weak Point (1) Single phase Caulking torque high. Efficiency low. O Vm Starting torque low. Switching 2 TR operation Disadvantage for Noise 1 Sensor or 2 Sensors Simple Circuit compositionand Vibration. Twice Slot Low Cost Fluctuation range of Simple Circuit composition rotation high. 0 Disadvantage on low driving. (2) Three phase Caulking torque low. Efficiency high. <mark>9</mark> Vn Starting torque high. Advantage for Noise and Switchin 6 TR operation Vibration. Complicated circuit-2 Sensors or 3 sensors Fluctuation range of rotation High Cost Three times of Slot low. Complicated circuit Advantage on low driving. 10 Q₂ 0 Miniaturization. Variety range of countermeasure of control specification.

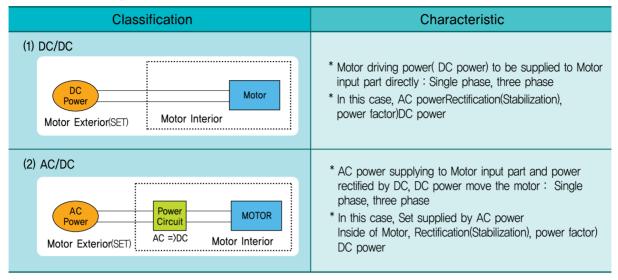
1) Classification by Driving Method

2) Classification by driving circuit position

PRODUCT REATURE

Classification	Hall sensor	Drive circuit	Lead wire
(1) Circuit built-in type	Interior disposition	Interior disposition	 * Single phase : Basic double line + α (VM, Gnd) * Three phase : Basic triple line + α (VM, Vc, Gnd) * Connection of interior pcb pattern
(2) Circuit exterior type	Interior disposition	Exterior disposition	* Exterior : Basic 8 lines (Vc,Gnd,W1,W2,W3, H1,H2,H3)
(3) Circuit exterior type	None	Exterior disposition	* Exterior : Basic triple line + α (W1,W2,W3)

3) Classification by DC input voltage

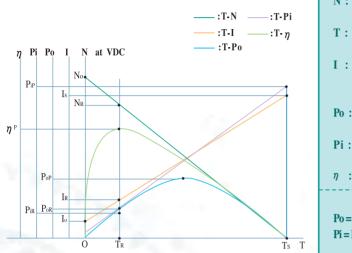

Classification	Characteristic
(1) DC low-voltage type Motor Exterior AC Power AC Circuit AC 220V=>AC 24V AC 24V=>DC 34V	 * Motor driving power(DC power) to be supplied to Motor input part directly, VM power under 60V. * Voltage range : Generally 10~60V
(2) DC high-voltage type Motor Exterior AC Power Circuit AC 220V=>DC 311V	 * Motor driving power(DC power) to be supplied to Motor input part directly, VM power over 60V * Voltage range : Generally 60~350V * High drive composition cost, high wiring labor cost

DC power specification

Classification	VM	Vc	Gnd	Vsp	Etc
Classification	24V Variable	12V fix	_	_	FG, CW/CCW
Application(High-volta	age) 140/310V Variable	15V fix	_	$0 \sim 6V$	FG, CW/CCW
Application(High-Voltage / Co	ontrol) 140/310V Variable	15V fix	_	$0 \sim 6V$	FG, CW/CCW
Power supply seque	nce 3	2	1	4	

4) Classification by Input Power

PRODUCT FEATURE


Strong and weak point of BLDC Motor

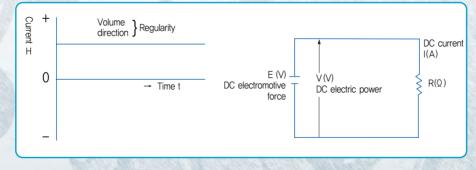
Classification	AC MOTOR	BLDC MOTOR
Rpm	No available rpm performance on condition by over synchronous speed * 2 Pole, 60Hz : 3600 rpm Instability motor driving level condition by low driving	Available Rpm performance over synchronous speed * No limitation of Pole and frequency Stable driving performance under low-speed.
Control performance	The Performance is not in proportion * Phase control, Tap Control, etc Needed additional rpm control function (FG)	Relative performance–Good condition of control capability * Voltage control and Current control, etc No Needed additional rpm control function (FG)
Efficiency	Average 10~50%	Average 40~60%
Drive circuit	Not necessary	Necessary(Driving circuit)
Starting specification	T-N-I curve, Driving performance is relatively low.	Linear characteristic of T-N-I, Good condition of driving performance
Configuration	Relatively large dimension on same performance	Compact possible
Cost	Low	High

21C, for World geared motor

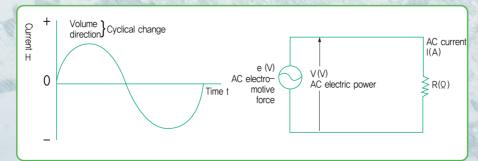
BLDC Motor Characteristic curve

PRODUCT FEATURE

N: Revolution(rpm)	No : No load revolution(rpm)
	N_{R} : Rated load(peak efficiency)revolution(rpm)
T : Torque(kg.cm)	T_{R} : Rated load(peak efficiency)Torque(kg · cm)
	Ts : Locking Torque(kg \cdot cm)
I : Current(A)	Io : No load current(A)
	IR : Rated load(peak efficiency)current(A)
	Is : Locking Torque(A)
Po : Output(W)	Pop : Peak output(W)
	Por : Rated load(peak efficiency)output(W)
Pi : Input(W)	P _{iP} : Peak input(W)
	P _{iR} : Rated load(peak efficiency)input(W)
η : Efficiency(%)	η_{P} : Peak efficiency(rated load)
	$\mathbf{Pop} = (\text{Ts/2}) \times (\text{No/2}) \times 1.027 \times 10^{-2}$
$Po = N \times T \times 1.027 \times 10^{2}$	$\mathbf{Por} = \mathrm{Tr} \times \mathrm{Nr} \times 1.027 \times 10^{-2}$
Pi=I×V	$\mathbf{P}_{iP} = IS \times V$
	$\mathbf{P}_{iR} = IR \times V$
$\eta = \text{Po}/\text{Pi} \times 100$	$\eta_{\mathbf{P}} = \operatorname{Por}/\operatorname{Pir} \times 100$


7

BLDC Motor-Related Terms


 Rated Voltage : Real voltage to motor driving, specified performance range Voltage increase and decrease affect on the temperature increase and torque decrease

(2) DC(Direct Current) & AC(Alternate Current)

a. DC (Direct Current) : Stable DC volume and direction on time

b. AC(Alternate Current) : Cyclical change of AC volume and direction on time

21C, for World geared motor

- (3) Rating : The specified requirements and the limit under rating design condition.
 - a. Continuous Rating : Continuous operation under the specified conditions.
 - b. Intermittent Rating : Specified period of time under the specified conditions.
 - c. Interactive Rating : Cyclic operations of stopping and running with certain load.
- (4) Torque : Turning Effect

PRODUCT FEATURE,

- a. Starting Torque : Torque of motor starting
- b. Stalling Torque : Maximum Torque under by rated motor condition
- c. Rated Torque : Continuous torque having the rated out-put under by motor rated condition.
- (5) Torque constant : No magnetic flux change during motor rotation in case of using permanent magnet.
 - Torque is in proportion to only Input current. $T = Kt \times I$

Kt(Numerical formula) is torque constant.

- (6) Reversible electromotive force constant : Reversible Electromotive force(E) is in proportion to Motor rotation speed (W),
 - But inverse proportion to Terminal voltage(V)

The formula $E = Ke \times \omega$ (Ke : Reversible electromotive constant)

(7) Speed

a. Synchronous speed : Motor speed(An alternating current) designed by pole number and Electricity frequency.

Ns = $(120 \times f) / P$ Ns : Synchronous speed (rpm) f : Electricity frequency (Hz) P : Pole

- b. No-Load rotation speed : Under condition of No-Load is imposed on the output axis.
- c. Rated rotation speed : Motor rotation with rated output.
- (8) Output : Motor capability to rotation by unit period.(The power originated by shaft)
 - a. 1 [W] = 1 [J/s] = 1 [N \cdot m/s] = 1/9.8 [kgf \cdot m/s], 1HP : 746W
 - b. Torque T $[N \cdot m] = (Po \times 9.8) / (N \times 1.027)$
 - b. Rated Output : The rated Voltage of Motor, rated frequency, rated rpm, rated torque on the condition of the optimized specification
- (9) Input : Input (Voltage × Current) is total amount of electric energy and loss needed to motor running. (W: Watt)

a. In case of direct current : Pi = V × I [W]

- b. In case of single-phase current : $Pi = V \times I \times \cos \Phi$ [W]
- c. In case of three-phase current : Pi = $\sqrt{3} \times V \times I \times \cos \phi$ [W]
- (10) Efficiency : The ratio of Input and Output Efficiency(%) = (Output / Input)×100, Efficiency(%) = {(Input Loss) / Input}×100, Efficiency(%) = {Output / (Output + Loss)}×100
- (11) Loss : Inefficiency factor being changed by heat, vibration and noise

a. Mechanical reason

- Coil damage : Coil Heat loss by Coil resistance
- Core damage : Hysteresis loss and over current loss.
- Mechanical loss : Friction loss (Bearing and Shaft, etc) and windage (Friction loss of rotation object in air)
- a. Loss by Load and No-Load
 - \star No Load loss : Current loss under by no-load (Core and mechanical)
 - Core loss : Loss by fixed iron core
 - Eddy Current Loss
 - Coil damage : Loss of wiring resistance between fixture and rotor- Heat loss (I^2×R)
 - Mechanical loss : Friction and windage

\starLoad loss : Heat loss by coil demage